// MonteCarlo.cpp : Defines the entry point for the console application. #include #include #include "Common.h" // OpenCL C API #include // OpenCL C++ API #include "cl.hpp" #include #include #include #include "MonteCarloTests.h" const bool writeOutRandoms = false; const size_t randomNumbers = 512; const size_t threadCount = 512; // was 512 void cppapi() { cl_int err = CL_SUCCESS; // Get a platform ID std::vector platforms; cl::Platform::get(&platforms); if (platforms.size() == 0) { std::cout << "Unable to find suitable platform." << std::endl; exit(-1); } // Create a context cl_context_properties properties[] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(platforms[0])(), 0 }; cl::Context context(CL_DEVICE_TYPE_GPU, properties); // Enumerate the devices std::vector devices = context.getInfo(); // Create the command queue cl::Event event; cl::CommandQueue queue(context, devices[0], 0, &err); // Create the OpenCL program std::string programSource = FileToString("../kernels/montecarlo.cl"); cl::Program program = cl::Program(context, programSource); err = program.build(devices); if (!CheckCLError(err)) { for (size_t devID = 0; devID < devices.size(); ++devID) { std::cout << "Device: " << devID << std::endl; std::cout << "Build Status: " << program.getBuildInfo(devices[devID]) << std::endl; std::cout << "Build Options:\t" << program.getBuildInfo(devices[devID]) << std::endl; std::cout << "Build Log:\t " << program.getBuildInfo(devices[devID]) << std::endl; std::cout << "--------------------------------------------------" << std::endl; } } // Get the kernel handle cl::Kernel kernel(program, "randomLCG", &err); CheckCLError(err); // Allocate memory for random numbers and random seeds // Every thread receives a private seed, stored in seedBuffer/clSeedBuffer // Every thread is supposed to generate randomNumbers random numbers std::vector randomBuffer(threadCount * randomNumbers); std::vector seedBuffer(threadCount); for (int i = 0; i < threadCount; ++i) { seedBuffer[i] = rand(); } cl::Buffer clSeedBuffer = cl::Buffer(context, CL_MEM_READ_ONLY, sizeof(float) * threadCount, NULL, &err); queue.enqueueWriteBuffer(clSeedBuffer, true, 0, sizeof(float) * threadCount, seedBuffer.data()); cl::Buffer clRandomBuffer = cl::Buffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * threadCount * randomNumbers, NULL, &err); // Set the kernel parameters kernel.setArg(0, randomNumbers); kernel.setArg(1, clSeedBuffer); kernel.setArg(2, clRandomBuffer); // Enqueue the kernel: threadCount threads in total, each generating random numbers in [0,1] randomNumbers times queue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(threadCount, 1), cl::NullRange, NULL, &event); event.wait(); // Copy result back to host queue.enqueueReadBuffer(clRandomBuffer, true, 0, sizeof(float) * threadCount * randomNumbers, randomBuffer.data()); // Write out the output to file as "index value" rows if(writeOutRandoms == true) { std::ofstream ofs("randoms2.txt", std::ofstream::out); for (int i = 0; i < threadCount; ++i) { for (int j = 0; j < randomNumbers; ++j) { ofs << j << " " << randomBuffer[i + j * threadCount] << std::endl; } } ofs.close(); } std::cout << "Finished" << std::endl; } int main() { //cppapi(); OpenCLHandler handler("../kernels/montecarlo.cl"); size_t bucketNum = 50; //handler.run_test(new LCG(randomNumbers, threadCount, bucketNum)); //handler.run_test(new LFG(randomNumbers, threadCount, 256, bucketNum)); handler.run_test(new CTG(randomNumbers, threadCount, bucketNum)); //handler.run_test(new Hybrid(randomNumbers, threadCount, bucketNum)); //handler.run_test(new Halton(randomNumbers, threadCount, 2, bucketNum)); return 0; }